

NIKA and NIKA2: from the pathfinder KID camera to the ultimate mm-wave imaging/polarimetry at the 30-meters Pico Veleta telescope

MONFARDINI Alessandro

Institut Néel – LPSC – IPAG – IRAM (Grenoble) For the NIKA2 collaboration

Other collaborations including APC (M. Piat, A. Tartari, D. Prele and the mm group)

Corrs "Our" mm-wave telescope

Working Bands:3mm(100GHz)2.05mm(146 GHz)1.25mm(240 GHz)0.87mm(345 GHz)

IRAM, based in Grenoble, was founded in 1979 by the French CNRS, the German MPG (Max-Planck-Gesellschaft) and the Spanish IGN (Instituto Geográfico Nacional).

IRAM = Institute for Millimetric RadioAstronomy

Corrs Sensitivity + Angular resolution

The faintest compact sources seen by Planck are detected in T_{integration} < 1 sec by NIKA-2

SUB-KELVIN DETECTORS REQUIRED

NEEDS:

- detecting/measuring tiny amounts of power (e.g. $aW/Hz^{0.5}$)
- build **thousands pixels** cameras = efficient **multiplexing**

CITS Why low temperatures ?

Whole point is to reduce the energy associated to the "elementary excitation".

 $\Rightarrow N = E/\epsilon$ $\Rightarrow \sqrt{N} = \sqrt{E/\epsilon}$ $\Rightarrow \text{Energy Resolution } \propto \sqrt{\epsilon}$ $\Rightarrow \epsilon \text{ to be MINIMIZED}$

- → Cooper-pair-breaking detectors (gap $\approx 3.5 \cdot kT_c$)
- → Bolometers (phonon energy \approx kT)

Big advantage of bolometers: working temperature is a "free" parameter

Big advantage of pair-breaking detectors: design not driven by thermal constrains

Independent "practical" limitation: multiplexing

Chrs Why low temperatures ?

Whole point is to reduce the energy associated to the "elementary excitation".

 $\Rightarrow N = E/\epsilon$ $\Rightarrow \sqrt{N} = \sqrt{E/\epsilon}$ $\Rightarrow Energy Resolution <math>\propto \sqrt{\epsilon}$ $\Rightarrow \epsilon$ to be MINIMIZED

→ Cooper-pair-breaking detectors (gap $\approx 3.5 \cdot kT_c$)

T_{base} << T_c

→ Bolometers (phonon energy \approx kT)

Big advantage of bolometers: working temperature is a "free" parameter

Big advantage of pair-breaking detectors: design not driven by thermal constrains

Independent "practical" limitation: multiplexing

Chrs Classical approach: bolometers

Developed successfully by a large number of groups Worldwide, including CNRS and CEA as well (e.g. LETI, Irfu, CSNSM-IEF, APC, CRTBT) Antenna-coupled arrays

→ some practical limitations: slow (thermal), complex, <u>multiplexing not so easy</u>

Corrs Other approach: Cooper-pairs counting

Δ (gap) ~ 10⁻²³ J (0.1 meV)

GOAL: <u>count</u> the Cooper pairs ... to deduce how many are missing

HOW: measure their total kinetic energy → MEASURE THE INDUCTANCE OF A FILM

CITS Resonators for sensitive L measurement

ORIGINAL IDEA: JPL-Caltech (2001) – P. Day, J. Zmuidinas

Chrs Kinetic Inductance Detector

CITS Kinetic Inductance Detector

Corrs Multiplexing KID

CITS KID arrays made in Grenoble

2010-2013

6 mr

2009

<u>2008:</u>

- single pixel

<u>2009:</u>

- 30 pixels, detectors noise dominated

<u>2014 - 2016:</u>

- Background-limited (10⁻¹⁷ W/Hz^{0.5})
- Readout line 2.5 m long !! Litho !!
- AI high-quality film (t = 10-20 nm)

Astronomy & Astrophysics 521, A29 (2010) The Astrophysical Journal Suppl. 194 (2011) Astronomy & Astrophysics, in preparation

CITS Technology tricks, an example

ChrsLumped Element Kinetic Inductance Detectors

CMS FPGA readout electronics

Journal of Instrumentation 7, Issue 07, 7014 (2012) Journal of Instrumentation 8, Issue 12, C12006 (2013) Journal of Instrumentation, submitted, arXiv:1602.01288

Instruments

The KID international pathfinder (2010-15)

APC - 10/05/2017

DUAL-BAND, 356 pixels total

CITS ... not in clean-room today ?

« NIKA0 » (2009) installed CMIS

... through this hole

interface optics

Cryostat (containing KID arrays)

Chrs Our first run in October 2009

Jochem Baselmans Simon Doyle Loren Swenson Alain Benoit Philippe Camus Aurelien Bideaud François-Xavier Désert Andrey Barishev **Stephen Yates** myself

Everybody wanted to witness the first KID array on the Sky Astronomy and Astrophysics 521, A29 (2010)

Nearby galaxies mapping/spectrum

Credit: R. Adam

Nearby galaxies mapping/spectrum

Galactic Science – an example

Credit. Andrea Bracco (Irfu)

Submitted to A&A

ORION OMC-1 molecuar cloud is the closest site of OB star formation

Figure 15. Column density map (left) obtained from the intensity map I at 1.15 mm. For comparison the polarization fraction is reported on the right panel of the figure.

Astronomy & Astrophysics 599, A34 (2017)

- \rightarrow 10 times bigger (and efficient) than NIKA
- \rightarrow 3,300 pixels, three arrays
- → Imaging + **Polarisation** (120 300 GHz)

The NIKA2 team includes more than 80 people

Cryostat 1.3 tons, fully remote control, $\approx m^3$ at 150mK, possible thanks to ... Alain Benoit

The latest NIKA achievement: kinetic map of the intergalactic medium

The largest g-bound objects, building blocks of our Universe, are the clusters of galaxies. They are mainly made of dark matter and hot ionized gas. Only a few percent of the mass is contained in galaxies. These mergers are the most energetic events since the Big Bang and they are fundamental to understand.

Astronomy & Astrophysics 598, A115 (2017)

Chrs The NIKA-2 instrument (2015-2025)

Succesful installation achieved in September 2015

First NIKA2 images taken on DR21OH, a star-forming region in the dense molecular cloud Cygnus X.

State-of-the-art instrument

The combination telescope + NIKA2 allows <u>a gain in mapping-speed</u> of a <u>factor 50</u> compared to previous generation instruments.

The cryostat in the receivers cabin

The dilution gas handling in the basement

NIKA2 figures:

- 3000 pixels over 3 arrays
- 1.2 tons; 2.5 m long; 3000 pieces
- Two Pulse Tubes
- Fully remote control
- Completely cryogen free
- Base T \approx 150 mK

The 40 COAX cables

Corrs Cas A – $T_{INT} \approx 10$ minutes

CITS MWC349 – Last week

MWC349 2 mm

APC - 10/05/2017

3<u>4</u>

SZ minimum \rightarrow 150 GHz

SZ « almost zero » \rightarrow 250 GHz

 $\begin{array}{l} R_{eff} \sim 5 Mpc \\ n_{e} \sim 10^{\text{-3}} cm^{3} \end{array}$

BEFORE

NIKA2 performance

250 GHz \rightarrow 1140 x 2 pixels

150 GHz \rightarrow 616 pixels

On average, **90% of the pixels are identified** (e.g. 94% on the 2mm array) However, **only around 80% of the pixels exhibit very good S/N.**

FHWM are around 11 arc-sec at 250 GHz and 17 arc-sec at 150 GHz

The sensitivity is **better than the ambitious goals at 150 GHz**, approaching this goal (and **much better that the specifications**) **at 250 GHz**.

September 2012 \rightarrow Project kick-off (start designing cryostat etc.) September 2015 \rightarrow Installation (1k pixels warm readout) January 2016 \rightarrow Complete readout for 3kpixels September 2016 \rightarrow hardware upgrade (new dichroic from Cardiff, new and more sensitive 150 GHz array) April 2017 \rightarrow Last « intensity » commissioning run (enough data) April 2017 \rightarrow First « science verification » run June 2017 \rightarrow First « polarisation commissioning » run

From the next Winter, if the IRAM software is ready, open to astronomers via competitive calls.

GOAL: efficiently absorb both polarisations

SOLUTION: Hilbert fractal curve (3rd order)

Film: thin Al (12÷25nm)

Activity driven by APC – mostly was driven by the CORE program

Chrs Polarization on-chip

Cross-polarisation of the order of 2-5%, best values 2% at 150 GHz

Encouraging even if not yet in the wanted range (<1% for a large band)

Beyond NIKA2 ?

KID in Space ? Spectroscopic functions ?

.... here just an example

Chrs Extending the sensitivity range

NEW MATERIALS (gap engineering)

- Build our **preferred gap** to have access to lower frequencies
- Maximize the Kinetic Inductance

→ Exploring/synthesizing new
superconducting materials
(elements, alloys, multilayers)

→ Ongoing collaborations with e.g. CSNSM, Karlsruhe etc.

Sub-Gap KID - SKID

O. Dupré and F. Levy-Bertrand, Supercond. Sci. Technol. 30 045007 (2017)

Physics discussions ongoing (e.g. plasma modes, inter-gap states, L_s non-linearity etc.)
Prototype 22 GHz spectrometer for atmospheric studies (collaboration IRAM)

Chrs Sub-Gap KID - SKID

O. Dupré and F. Levy-Bertrand, Supercond. Sci. Technol. 30 045007 (2017)

Physics discussions ongoing (e.g. plasma modes, inter-gap states, L_s non-linearity etc.)
Prototype 22 GHz spectrometer for atmospheric studies (collaboration IRAM)

CITS The CONCERTO instrument

Adding in front of the cryostat a fast interferometer allows multiplexing the spectral dimensions in the time-domain.

Intensity mapping of fluctuations of the (red-shifted) [CII] line emission. Instead of resolving the individual galaxies, measuring fluctuations on large sky regions and in a wide band.

Chrs The work has started

CITS The NIKA-CONCERTO Moore's law

Thanks

Just a bunch of us at the telescope

For more details on our group: http://neel.cnrs.fr/spip.php?rubrique158